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Abstract

We devise a class of fast wavelet based algorithms for linear evolution equations whose

coefficients are time independent. The method draws on the work of Beylkin, Coifman, and
Rokhlin [1] which they applied to general Calderon-Zygmund type integral operators. We

apply a modification of their idea to linear hyperbolic and parabolic equations, with spatially

varying coefficients. A significant speedup over standard methods is obtained when applied

to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
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1. Introduction

During the last few years a number of fast computational algorithms have been developed

for elliptic problems. These are techniques for which the number of arithmetic operations

needed are close to linear as a function of the number of unknowns. Examples of algorithms

of such complexity are multigrid methods and the so-called fast Poisson solvers. The fast

multipole method and wavelet based methods for elliptic problems formulated as integral

equations also belong to this category [8], [1].

There has not been the same progress for hyperbolic and parabolic methods. In general

classical numerical techniques for these problems are already optimal.

Consider a system of evolution equations.

o9tu+L(x,eo9)u=f(x), xEQZcRd, t > O,(1.1)

u(x) = uo(x),

with boundary conditions, where L is a differential operator.

An explicit discretization of this problem typically takes the form,

0;" u(xj,t,), t,, =nAt,

X= (jAxi,. .. , jdAXd)

(1.2) un+ 1-" Au ' + F,

U = UO,

U, F E RNd, At = const. lAxI'.

The vector un contains all the unknowns 0 at time level tn. For simplicity we shall assume

= 1,2,...,N in all dimensions v = 1,... ,d.

The matrix A is (Nd x Nd) with the number of elements € 0 in each row and each

column bounded by a constant. Every time step requires O(Nd) arithmetic operations and

the overall complexity for a time interval of 0(1) is of the same order as the number of

unknowns, O(Nd+r).

There are, however, some fast methods based on the analytic form of the solution opera-

tor. In [3] the multidimensional heat operator, with u0 and f both zero, but with inhomoge-

neous boundary data given at M points, was treated. There the closed form of the solution

evaluated at M points at time level N was obtained in O(NM) rather than O(N 2 M 2 ) op-

erations. Also, in [4], the same authors obtained an algorithm for evaluating the sum of

N Gaussians at M arbitrarily distributed points in O(N + M) operations. So far, their
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interesting method appears to need an explicit analytic representation of the heat kernel,

effectively ruling out variable coefficient problems.

The formula (1.2) has a simple closed form solution

n-1

(1.3) u n = Anuo + E AF.
Vi=0

This form can be used to compute the solution A'tuo, for F = 0, in log n steps, (n = 2' ) m in-

teger; here and throughout, log n = log 2 n) by repeated squaring of A : A, A2, A4, As,... 'A, .

Unfortunately the later squarings involve almost dense matrices and the overall complex-

ity is O(Nd log N) which is larger than that using (1.2) directly.

For an appropriate representation of A in a wavelet basis all of the powers AV may be
approximated by sparse matrices and the algorithm using repeated squaring should then be

advantageous.

We shall consider the following algorithms for the computation of the closed form solution

(1.3) of the inhomogeneous problem in m = log n steps,

B := SAS - '

C:=I

(1.4) C := TRUNC(C + BC,) (iterate m steps)

B := TRUNC(BB,e) j

U n:= S-I(BSu° + CSF).

The matrix S corresponds to a fast transform of wavelet type and the truncation operator

sets elements in a matrix to zero if their absolute value is below a given threshold.

(1.5) A = TRUNC(A,e) : = a- laiji e
aij =0 Iaijl <e.

It is easy to see that algorithm (1.4) is equivalent to (1.3) for c = 0. This is not so for e > 0

and also for F # 0. We shall however show that it is possible to choose e small enough for
the result of (1.4) to be arbitrarily close to (1.3) but still with very few arithmetic operations.

For a fixed predetermined accuracy level the computational complexity to calculate a one

dimensional hyperbolic equation can be reduced from the standard O(N 2 ) to O(N(log N)3 ).

The extra cost per time step is minimal. This also makes i. possible, as a curiosity, to use

algorithms which are unstable in the traditional sense.

Our technique is even more favorable for parabolic problems. A d-dimcnsional explicit
calculation with standard complexity O(Nd+2) may be reduced to O(Nd (log N)3).
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The algorithm (1.4) can be extended to some problems with time dependent data. In this

case, we clearly need to compress the information in the data such that not all the O(N +' )

values in, e.g. the inhomogeneous term f(xi, t,) are needed.

One simple but important application of this type is from optics or electro-magnetic

scattering with a time periodic source. If k points are needed to resolve one time period, we
can group k time steps together

k-1

(1.6a) un+k = Akun + E AJFn+k+jl.
i=0

where

(1.6b) Fn = Atf(tn).

This equation is now of the type (1.2) with time step kAt and with inhomogeneous term

k-1

(1.6c) F = AiF+k+jl.
j=O

In sections 2 and 3 we shall discuss the analytical properties of the algorithm. Numerical

examples are presented in section 4.

2. Hyperbolic Problems

Consider first the simple one dimensional scalar advection equation,

Otu +aau = 0, a > 0
(2.1)

u(x,0) = uo(x), 0 < X <1.

The functions uo and thus u are assumed to be 1-periodic in x. The solution of (2.1) is given

by:

(2.2) u(x,t) = uo(x - at).

The different rows of A" in a numerical solution of (2.10) will represent approximations of

the Green's function G below, 00
U(x,t) = L0G(x,y, t)uo(y)dy,

(2.3)

u(X, t) = J 0(x - y - at)uo(y)dy.
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Let Wj be a truncated wavelet expansion of a 8-function with an orthonormal set of compactly

supported wavelets,
6(x) -. ,oj(x) = ak~ok(X)

(jk(X) = 2- b(2-jx - k + 1)

The choices of V)(x) will be discussed below. Assume that the rows of A' are discrete 6-

functions, i.e. just one element is nonzero and large. For each level j = 1, 2,... , J there are

only a finite number of aik 5 0. With J = m = log N there is only log N of all aik # 0.
Thus each row in B, (1.4), has log N elements, bjk # 0. The matrix B2 is also a transform
of an idealized matrix A' and will have N log N elements different from zero. This means

that each iteration step in the algorithm (1.4) produces O(N(log N)2) flops when F = 0.

We have assumed that calculations are only carried out for those B 2 elements which are

different from zero. In practice a slightly larger number of elements needs to be computed

and then truncated. This corresponds to the case when the location of the 6-functions is
only approximately known. Compare the wavelet technique for Burgers' equation by Maday,

Perrier, and Ravel [6].

Each row of C, (1.4), is a transform of a step function,

{ const. 0 < x < at,
(x) = , else

This function can also be represented by log N wavelets and thus the overall cost is

O(N(log N)3).

In numerical computations the rows of A' are only approximations of 8-functions. If an

upwind scheme,

0 0U - -I-

(2.4) u9= Uo(x), j =1,2,...N,

A =~ lx<1

is used A will have the form,

1-A 0 ... A

A 1-A 0 0
0 A 1-A 0 ... 0A=

0 ... 0 A 1-A

The matrix Av will have Toeplitz structure. Each row is still an approximation of a 6-
function. The first order smoothing effect of (2.4) is given by the modified equation, [15,

(2.5) Otu + a8Tu = (aAx/2)0 u.
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Equation (2.5) is parabolic with a fundamental solution of the form,

(2.6) G(x - y, t) = (21raAxt)- exp(-(x - y - at)2 /(2aAxt)).

Compare the solution formula for parabolic problems (3.2).

Each row of A" is thus a close approximation to the function G(x - y, t) above. The

computational complexity of the algorithm (1.4) depends on how many wavelets are needed
to represent G(x - y, t) as a function of x, (0 < t < T) with a given accuracy.

Higher order accurate (say order 2p-1) dissipative finite difference approximations to (2.1)

are usually modelled by the equation

(2.-7) ut + au, = (-1)P+ 1k,(Ax) 2 I' 2 u.

with kp >_ 6 > 0, 6, independent of Ax.
The fundamental solution for this parabolic equation is:

Gp(x,t) = 1J d~exp(i(x -at)-

The key estimate we shall obtain here (and which we certainly do not claim is new) is:

(2.8) X + (xG,( + at, t) <_ C,,P

uniformly in 0 < t and Ax and for all nonnegative integers m.

Proof of 2.8. We wish to bound

1 (i )mkX+l eizkp(AX) 2 P- -gd "

= (0 e )x r [~ e kP(A&X)2p-I2pt ] d27r -oo ( -1)M+

= 00O [exp ((f( x)~~~2) [()T+l [ me-&P] d .

The result is now clear. Also, an inspection of the right hand side of the above shows that

C,p, can be chosen to be arbitrarily small if t(AX) 2p - 1 is large enough.

Remark R1. Let the general space dependent coefficient, one dimensional system of hy-

perbolic equations

u, + A(x)u, = C(x)u,
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where u is an t vector, A is a uniformly diagonalizable smooth t x i matrix, with all real

eigenvalues Ai(x), and C(x) is smooth, be approximated by a dissipative finite difference

scheme of order 2p - 1. Typically, its model equation is a systems version of (2.1)

Ug A~~u: C(X)U + (_l)p+'(A X)2 1p-l a )
where (-l)P+lP(x, -) is a 2p order elliptic operator. A more involved argument shows that

the fundamental solution satisfies an estimate of the type (2.8) with the expression x + at

replaced appropriately by solutions of 4t = Ai(;i) i(O) = x, i = i,.,I and with Cm,p

possibly growing in time like Cmpekt for k fixed.

Our numerical procedure involves the compression of the matrix A', which for the purpose

of analysis only, we shall view as the discretization of the fundamental solution for either

(2.5) or (2.7),

(A')jk = G(xi,yk,tn)

where the interval [0, 1] is discretized via

Xj=-I , ...,A N=27

[0, 1] x [0,1) is discretized via (xi, yk), and t' = nAt = nAMx, n = 0, 1,....

We now adapt the terminology, notation, and results of [1] to this unsteady problem

(1.1).

Finite difference schemes approximating (1.1), e.g. (2.4) are regarded as acting on a
vector {S}3NI which is to be viewed as approximating u(x,O) on the finest scale:

= 2fJp(2 x-k+)u(xO)dx

= Jf(X)Pk(x)dx.

All functions, both continuous and discrete, are extended periodically:

u(x,t) - u(x + 1,t)

0 08 k+N=-S

etc.

The function p satisfies
2m-1

W(x)= hp+ip(2x- p)
p=0

The function O(x) which will generate an orthonormal basis is obtained via

2m-1

O Z) gp+iW(2x -p)
p=0
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with g, = (-1)P-lh 2 ,n-p+l, p = 1,... ,2m and f (x)dx = 1.
The coefficients {hp}2 1 are generally chosen so that

Vk3,k(a) = 2-2(2-jx - k + 1),

for j, k integers, form an orthonormal basis and in addition, the function V(x) has m van-

ishing moments
J O(X)X'dx =O, E 01..m

Also we define

Vjk = 2- V(2-jx - k + 1).

Finally, we assume that there exists a real constant r,(T. = such that the following

conditions are satisfied:

f V(x +Trm)xldx = 0=1,...,m- 1,

and f V(x)dx = 1.
In this case the quadrature formula becomes:

0 1 k -1 +Tm
k U N ) + O(N(+I)))N

and the initial discretization error is O(N-(m+l)) up to uniform translation.

The decomposition of the vector fs 0... ,,s} into the basis we use to compute with

comes via
{s1} - {s {s,} ...- {s}

\ {dk,} {} ... {d,}.

This is implemented in O(N) operations using:

p=2m

'k E hP+2k_1

p=1

p=2m

= PS j +2k-1

p= 1

and the st, dk are viewed as periodic sequences with period 2"- j .

The orthonormal basis consists of

[all,..., d1, ,d ,... .. ,, s;.
2 4

The inverse mapping can also be done in O(N) operations.
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Each of the sk is thought of as approximating

j /
sk = Jf(x)Vojk(x)dx=

2- ( ') [f(2-"+j (k - 1 + -m))

while each d- is thought of as approximating

d-k = J f(x)Ikjk(x)dx.

The numerical procedure effectively transforms the approximate discretization of the

matrix G(x 3 , yk, tn ) which is (An)jk. Estimate (2.8) (corresponding to (4.5) and (4.6) of [1],

uniform in all parameters, indicates (via an argument of [1]) that truncating An by removing

elements of a band of width b > 2m around a shifted diagonal (and its periodic extension)

i.e., those for which

Ij - k- aAn > b > 2m,

which replaces An by An'b, leads to an estimate

11An - An,bl1 < C log(N)

for C depending only on G.

It also follows easily that for large N and fixed precision e, only O(N log N) elements

will be greater than e. Alternatively, by discarding all elements that are smaller than a fixed

threshhold we compress it to O(N log N) elements. Again following the discussion in [1], we

note that this naive approach is to construct the full matrix in the wavelet basis and then

to threshhold. Clearly this is an O(N 2 ) operatioi..

Since we have, a priori, the structure of the singularities of the matrix A" the relevant

coefficients can be evaluated by using the quadrature formulas. Estimate (2.8) guarantees

that this procedure requires O(N log N) operations.

Remark R2. It is interesting to note that so called unstable difference schemes can be used

without any drastic loss of efficiency. If (2.1) is approximated by,

Un+1 = ,i Uu + =+ - -- 1)/-
(2.9)

0uq= u o( x j ) , j=I,2,...,N

the algorithm is not stable for any fixed A > 0, see e.g. [7].
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The approximation does converge if At < CAx2 , (A < CAx) with an amplification

factor 1 + O(At). The number of timesteps for t = 0(1) calculation will be large, n =

O(Ax - ' ) = O(N2 ). This is devastating for the standard explicit algorithm (1.2) but will

only affect the complexity of (1.4) by a constant factor. The number of iterations (m in

(1.4)) will increase from log(N) to log(N 2).

Our approach is in general not as favorable for multidimensional hyperbolic systems,

d

19u + E Aj(x)OY&,u = f(x), x E Rd,

(2.10)

u(X,0) = uo(x).

When u is a scalar or if the system can be diagonalized the algorithm (1.4) works well. The

solution is given by integration along characteristics and the support of the Green's function

is a small number of points (see Remark (RI) above). In the idealized case each row of

A" consists of a fixed number of 6-funct:ons. Its wavelet representation will have log(Nd)

nonzero terms. The overall complexity for (1.4) is then 0((log N)3 Nd) when the knowledge

of the location of the 6-functions is used. This is better than the standard O(Nd+,) estimate.

In general, however, the Green's function for (2.6) has a support with positive volume

in Rd and with a singular support of positive measure in Hausdorff dimension d - 1. The

representation of the singular support consists of O(Nd-1)6-functions in each row of A'.

This corresponds to 0(log(N)N - ') wavelets and the overall algorithm contains at least

(0(log N)N 2 d- 1 ) wavelets.

For general multidimensional problems the new algorithm is still of interest in special

cases, e.g., if the solution is needed only at a fixed number of points and if it is needed for a

large number of different data uo, f.

3. Parabolic Problems

The Green's function for parabolic problems is smooth in contrast to the hyperbolic case.

The pure initial value problem for the heat equation,

atu= Au, t >0, x E Rd,
(3.1)

U(X,0) = uo(X),

has a solution of the form,

(3.2) u(x,t) = (47rt) - d/2 nd exp(-Ix - yj 2/4t)uo(y)dy.
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In bounded domains the kernel has to be changed slightly depending on the boundary

conditions. For positive t(= nAt) each row in An is always an approximation of segments of

regular functions.

Our new technique is in general more favorable for parabolic problems than hyperbolic

ones. The structure of the matrix B in (1.4) is simpler. When t increases the kernel becomes

smoother and aik can be truncated to zero for all k when j is large enough.

Explicit methods for (3.1) also requires more operations than for hyperbolic problems

when the standard method is used. This follows from the parabolic stability requirement,

(3.3) At < const. IAxI2.

The new technique is only marginally affected by the constraint (3.3). Compare here the

discussion above for unstable hyperbolic methods.

In more general higher order multidimensional parabolic cases the fundamental solution

of, e.g.,
Ut + (-A)u = 0

is

Gd(x, t) = + L_ d exp(i . X- 1I 2dt).

This is merely a multidimensional and rescaled version of the fundamental solution used in

(2.8), and a simpler, but multidimensional version of (2.8) is just:

IXI-+'DmGd(x,t)I < C.d

Moreover Cmd is arbitrarily small if t is large enough (this of course requires the nonexistence

or other special behavior of lower order terms).

The matrix compression technique is easy here (for periodic problems without boundary

conditions) because the significant terms of [A') lie near the main diagonal and its periodic

extension in one dimension. In two space dimensions (as is usual for elliptic operators), we

also need to consider diagonals i = j ± kN for 0 < k < d. Recall A is an N 2 x N2 matrix in

2D.

It is clear that ' priori thresholding (to obtain 0(E) precision) near the image of these

diagonals will give us an O(Nd(log N)3 ) operation for each evaluation of the solution, where

d is the number of space dimensions for the problem.

4. Numerical Experiments

The algorithm (1.4) was applied to hyperbolic problemq in one space dimensions and to

one and two dimensional parabolic problems. Various difference approximations and wavelet
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spaces were used. We present results concerning the accuracy of the calculations and the

sparsity of (SAS-1 )n.

4.1 Hyperbolic problems. Consider the following scalar hyperbolic problem:

atu+a(x)a.u =f(x)
(4.1 a)

u(x,0) = uo(x)

with periodic boundary conditions (0 < x < 1). We made the following choices:

(4.1b) a(x) = 0.5 + 0.115 sin(47rx)

(4.1c) f(x) = cos(47rx)

(4.1d) uo(x) = sin(47rx).

In the discretization, Ax = 1/1024 and At/Ax = 1. The wavelet transform operator

S uses the Daubechies-8 wavelets, which have 8 coefficients and have 4 vanishing moments.

Finite difference schemes of order 1,2,3,4, and 5 of accuracy are tested.

These finite difference schemes are obtained as follows. In each interval

(4.2) I = {x/(V - 1)A x < VAx}

a polynomial of degree k is constructed. This polynomial interpolates the two points
Un

(X- 1, ._.1) and (x,,un) and k - 1 of its neighbors. If k is even these interpolation points

go from x,,_t to X,+&. If k is odd they go from x,_(k- )_ to X'+( _-). This gives us a

.econstruction function which is a polynomial of degree k in each I . and is continuous,

but generally not differentiable at the boundary points x,,-, and x". We call this function

Rn,k(x)

To approximate (4.1) at the grid points (x ,tn+ l) we solve (4.1) "exactly" with initial

data

(4.3) uAX(x,t) - Rn'k(x)

for tl < j < tn+1, evaluate the solution at (x,,tn+l), and set u.' = uAx(xL,tn+l). We

require ,tM&X:(z)I<l so the solution depends only on data in I _ if a(x) > 0 and I +i if

a(X) < 0.
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In the special case when a(x) = a, constant, then

UP~ - Rn'k(x, - aAt)

(4.4)

+ j (X1 - - s))ds

In the case when f = 0 we get some familiar schemes: For k = 1 this is just the first order

accurate upwind difference scheme (2.4). For k = 2 this is just the classical Lax-Wendroff
second order accurate three point scheme, see e.g. [7]. For k = 3, 4, 5 the schemes are less

studied, but are known to be L2 stable, see e.g. [9] and the references therein.
For variable coefficients the result is

%L.(X tn+l) = Rnk1(X.(tn))

(4.5a) tn~1

+ f(X.,(tn +' - s))ds

where x,(t) solves

(4.5b) dx. = a(z,,), r" < t < tn+1

(4.5c) X,(tn) = x,,.

A fourth order Runge-Kutta method is used to integrate the O.D.E. (425b,c) and Simpson's

rule is used to evaluate the integral in (4.5a). The result of this approximation to the right

side of (4.5a) is defined to be u +1

Returning to the present case the computations ran 13 steps until t = 4, that is,

(SAS-1)2 1 was computed.

At each step n the number of elements of A" and (SAS- 1 )" whose absolute values are
greater than 10- 4 is shown in table 1. This is for methods whose order of accuracies go from
one through five. The results are also plotted on Figure 1.

These significant elements are located near the sub-diagonal corresponding to the char-
acteristic curve which is known a priori. The image of these locations in (SAS- 1)", shown

on figure 2, has total length of O(N log N) elements where N = 1024.

In the computation of (SAS-1 )n, first, from the knowledge of the PDE, we figure out the
structure of the singularities of A and its image in (SAS-1 )n . Then we compute (SAS-1 )2" =

(SAS-')- * (SAS-) n considering only the elements in a neighborhood of the singularities.
In particular, we define the neighborhood of a singularity to be locations whose distance

from the singularity are less than or equal to 5. If the singularities lie on a subdiagonal and
its periodic extension its neighborhood form a subband of bandwidth 11 (the wavelet filters

12



have 8 elements). This bandwidth is independent of the time t (the step n) and the size of

the problem. The errors due to the subband truncation, measured by Ijun - iinlI/Ijun1, are
shown in table 2b. Table 2a shows the relative error between the subband truncation and

the exact solution. Here and throughout, "11 " I1" denotes the 2 norm. Table 2c shows the

relative error between the subband truncation and untruncated under grid refinement for the

various orders. Unsurprisingly, since the relative length of the subband which is preserved

decreases linearly with grid size, the error increases, but only slightly under this process.

We note that the compression (as seen in Figure 1 and Table 1) is better for odd order
than for even order schemes. This is perhaps not surprising since (2.7) models schemes of

odd order accuracy. Singularities behave a bit differently for even order (say order = 2p)

schemes. These are modeled by

ut+ au,= ip(Ax)PT

(4.6)

where k. > 0 and 4p are nonzero constants. The odd order dispersive term above may tend

to spread singularities of the fundamental solution spuriously.

Finally table 3 shows the relative error due to truncation when the band width of the

subband is 9, 11, and 13 for the methods of first and second order. Figures 3a and 3b

compare the truncated versus the approximate solutions due to truncation of bandwidth 9
for the first and second order methods (the truncated graphs are dotted).

4.2 Unstable Schemes. For theoretical interest, we apply the method to a finite difference

scheme which is unstable for -I = A > 0

(4.7a) u',+1 =u'- A(Uj+1 - u>)12,

(4.7b) UP = Uo(Xj).

The amplification factor of this scheme is

(4.8) 1- Ai sin 0= r(ei°), -Ir<0 < l

so

Ir(ee)I = (1 + A2 sin 2 0).

This means that if

(4.9) At < 2c(AX) 2
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for some c > 0, then

(4.10) IIAUI2 < e ' .

The restriction (4.9) means that the operation count for this explicit method would be

O(N 3) if we were silly enough to use it. However our compression method allows for an

operation count of O(N(log N) 3 ) for the reasons described above.
Table 4 shows the number of elements in An and (SAS- 1 )n whose absolute values are

greater than 10- 3. We choose a bigger threshold here since we took 1 and nAt = 2,

so IIAnhII, as estimated in (4.10) grows to be roughly 10 when we are finished computing.

The error as measured by U (subband truncation using bandwidth 11) was 0.0136.

We also performed convergence studies as we refined the grid for this method. Figures
(4a,b,c) compare the numerical (untruncated) using dots versus exact solution for m =
128,256,512 grid points. The result indicates a second order method, as it should, since At =

(Ax) 2 . Figures (5a,b,c) compare the truncated bandwidth (using dots) vs the untruncated
for this method for m 5 128,256, and 512 grid points.

The relative error decreases with mesh refinement. The truncation error equation associ-
ated with this scheme involves limited antidiffusion. Perhaps this accounts for this behavior.

4.3 System of Hyperbolic Equations. We apply the method to solving the system of

hyperbolic equations:

W 0 -a0]0
on 0 < x < 1, t > 0 with the boundary conditions and initial conditions:

v(0,t = w(0, t)

w(1, t) =V(1, t)

(4.11b)

v(x,0) = vo(x)

w(x,0) - wo(x)

the coefficient a is chosen to be constant:

a = 0.115.

The numerical method used is the first order accurate upwind method described above.

The results are similar to the scalar case, except the structure of the singularities in the
matrices is more complicated. We have to keep track of reflections of singularities at the

14



boundaries which is quite simple in this case. The number of elements in A' and (SAS- 1 )"
n

whose absolute values are greater than 10- 4 is show" on table 5, and is plotted on figure 6.
The relative error due to the subband of width 11 truncation, measured by Iju n - finlI/IjunII,

is 0.0149.

The structure of the elements whose absolute values are greater than 10- ' of A20 48 and
(SAS- 1 )2

0
48 is shown in figures (7a,c), while Figure (7b) shows the image of a subband of

bandwidth 11 in (SAS-1 )2 °4s .

4.4 Parabolic Problems. We do experiments on the following parabolic problem:

Otu ='9.(a(x)O9u)+f(x)
(4.12)

U(X,0)= uo(x)

with periodic boundary conditions (0 < x < 1). We made the following choices:

a(x) = 0.5 + 0.25sin(2?rx)

f(x) = -7r2 cos(21rx) 2 + 7r2(0.5 + 0.25 sin(2rx)) sin(2rx)

uo(x) = sin(47rx).

The discrete setting and the wavelets are the same as in the hyperbolic problem. We use
the simple explicit central difference scheme (4.13)

ur,+' = uY + At _axAu

(4.13) 3 + (AX) 2 A-(a(x3)A+ui)

+ Atf (X3 )

where

AT-uj = :(uj:F - u,)

with At/(Ax) 2 = 0.25. The number of significant elements in A' and (SAS-1 )n is shown on
table 6, and is plotted on figure 8.

For the parabolic problem, the large elements of A are in the neighborhood of the main
diagonal. Their wavelet transform image is shown in figure 9. The relative error due to
subband truncation was 0.0025.

4.5 Two-dimensional Parabolic Problems. We consider the following problem:

o9tu = aiiOrxu + 2al28ryu + a22OyVyU

u(X,Y,0) = uo(X,Y)

15



with periodic boundary conditions (0 < x < 1, 0 < y :5 1). We choose

all(x,y) = 0.5+0.25sin(2rx)

al2(X,Y) = 0.115sin(27rz)cos(2ry)

a22(X,Y) = 0.5+0.25cos(2ry)

uo(x,y) = sin(4irx) + cos(8irx).

We use a standard two-dimensional explicit central difference scheme. The two-dimensional

data uij, j = 1 ... N1, k = 1 ... N 2 forms a one-dimensional vector in the following way

1U1,1 ..•. lUl,N2, U2,1 ... U2,N2, • • •, tiNt,1... UNI,N2 }.

To reduce the size of the problem, N2 is much less than N1 . In particular we took N =

128, N 2 = 8 that is, Ax = -L Ay = .

The compression worked quite well. Table 7 shows the number of elements in An on

(SAS-')n whose absolute values are greater than 10- . The relative error due to subband

truncation was 0.0066.
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o or62 order 3
Is A*~ T TS--I- A (SAS-' .A S-?')*
I _W8 _ Z38 2-04 23132 2048 2568

= -07 26560 49 27271 5120 27359
-4 5120 25N935 668 27704 386 27553

8 9216 24609 *-I4 26701 7 12 26975
16 14886 22260 14282 26531 i 02 26705

32 21376 1 20167 181 273491119 268

4 297281 15487 2 28588 13 26543
128 41190 11223 'f26T 29381 1646 25766
2W 52 7449 1-60 29037 194 24104
51 78582 5129 76 7747362 219

T2 7 3-5 &19) MW~ 617 5~ 17900
9 r8 1T 6 2342 1030 24034 3512 15193
46211302 1555 1iE!75 21998 41958 12942

9 284234 1079 1843 20507 48752 10558

a A- (A '') A" (SAS-'
I 307 2 25594 4-9 -60

2 6144 27893 7168I 28029
4 -- 69 27651 138 26913

8 036 27713 ~101 27881

16Ie 1 y o 28635 t114 2 _4 29 0nti9-
32 16032 185 P13198 28171

9_3 3313 1T2_ 28347
-Or- 3186 1350 2 o8

7F 2 33780 19566 28273
512 *iW74_Ur_ 33812 58-- 7--

102 716 36690 26496 69754
124 1 75 37893 3018 M541

1409 11 68 _2 3T7 340 23931 1 _

1819 0 8106 37205 36626 221 4 7

Table 1: Hyperbolic equation: the num~ber of elem~ents in A- and (SAS-')-
whome absolute values we greater than 10-4

I Iordel I order 2 order 3 1Iorder 4 1jordeil
error 0.1622 0.0106 0.0065 10.0109 10.0102 1

(a)

3 orderi I rder 2 order 3 Iorder 4 lorder 5 1
error 0.0035 0.0105 0.0065 0.0309 0.012

(b)

m orderr1 ore2 orer3 or r4 orderr5
10N24 0.3 0.0105 C.005 0. 109 0.102
I 12 I 0.025 0.0072 I0055 I.06 0.0064 I

18 .00-5 . 0. 59 0.0048
1 000 70036 0.0019 0j.0030 0.0028

(c:)

Table 2: ypbol i equation: the wr, mmswed by NO,, - ,11/lk,, (a) ompare with
t6e m-t molution; (b) due to the tn-atiom only; (c) due to the tuntcation only uder grid
,DAMt.
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width error for order1 e'ror for order 2

9 0.0227 0.0301
11 0.0035 0.0105
13 0.0028 0.0069

Table 3: Errors measured by 5 due to truncation for vious bandwidths and first
and second order.

I 12

a A- (A-')

1 512 512

4 1024 3I36
- 1024 1764

16 1024 2328
32 1024 3060
G_ 1024 4026

128 *046 5273
_ 56 26Mr 6302
512 2,560 7447
1024 3432 8360
2046 4566 9308
4096 6330 9266
6192 9362 10557

16364 1432 13346
32766 23172 19255
65536 41490- 599 5
131072 74750 46595
262144 132916 4586
24288 132454 106197

1048576 132304 110240
2097152 130164 115276

Table 4: Hyperbolic equation 'unetable schemea: the number of el ments in A' and
(SAS')* whose absolute values re greater than i0-3

D_ A* (5A-

126 25327
6154 6440

2! 123332 25747

37 1948 4

R 

14064
,, 530 101156

I5*72814 II1
98456 VIA

Table 5: System of hyperbolic equations: The number t eleaants in A and (SAS-)"

whose abeolute vv we reapeter than 10- 4 .
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n A* (SA '

S 3072 15194
2 5120 17342
4 _462 19136
8 11662 19326

16 16214 18775
32 21900 17622
64 30126 1439

126 41434 10387
56 75 __

512 76078 5073
1024 106976 354
2046 146466 2396
4096 199S76 1658
8192 272050 1082

Tabl 6 Parabolic equation: the number of elements in A* and (SAS - , ) whose absolute
values ae reste than 10-

ID A- (SAS-)
1 6632 34190
- 16612 52941
4 40210 420

2 7360 7
16 05802 84827
32 146292 ,71
64 198460 4-6856
128 2_696S2 31925

356 5456 21497
512 491936 13653

*1024 65800 6703
2048 1144 527]
409C 10486 3373

9192 1048576 19s]

Table 7: 2D-parabolic equation: the number of danints in A' and (SAS'-) whoe
absolute values ae reater that 10-'
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Figure 1: Nypebolc equation: the number ofelements in A" and (SAS- ) - w% whose
absolute imlUaes gr eater than 10-4

.... ...

I

Figure 2: Hyperbolic equation: the pattern of tigrnficaut elements in
(SAS-1)".
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order 1."izdth 9

0.5

0

-1.

-!.

o 200 400 600 g00 1000 1200

Figure 3a Trncation 'ersus nontruncated apprc~dmate solution, first order method trun-
cated at bandwidth 9 (Truncated is dotted).

order 2. width 9

0.5

0

.05

.1

0 200 400 600 3o 1000 1200

Figure Sb: Truncated vmsus cont-uanated appradmate solution, second order method.
truncated at bandwidth 9. (Truncated is dotted).

22



wwable: m. 12S. ae 0.1234

13

I

.S

.1

oI 20 00 15 0 00 20 4

Fgrm 4b: Exat vs apprimte .clutim *'astablh schemw ma w 128

LS I~MIRA: ina 12 , amroa 0.031

4

0 50 200 150 20 120 30
.223



U k .121.,urm 0263

S

0.

0 20 40 60 so 100 in0 34O

IrqAgw 5a: Taated landwidtb 11 vs untmucated fmt the umtable ughem, mn - 22

=so* s 236 mm 0.0148
1.5

0.

4.

0 o 10o L40 200 210 300

Fagwo 5b: Trwmted bandwidth 2) vs untwutatad fm, theWL gatbe nme, m 0 256

im&k =a 12 in.'w 0.0066

1

0

.0

A 2W000 400W

FV-u &L~ Ibmee bmdwWMt 11 ve "AntyMeaM Im tbe "IN" &me - 12

24
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